
Coin Pusher Pro Asset - README

Created by Alan O’Toole

This README document includes helpful hints, tutorials, and a description of how
the scripts work together.

If you have any questions or comments please let us know by emailing us at:
Alan@AlanOToole.com

Thank you!

mailto:Alan@AlanOToole.com

How do I enable Unity Ads for Coin Pusher Pro?

Coin Pusher Pro supports Unity Ads right out of the box! You will find a complete
AdManager.cs file that handles all sorts of things automatically for you when it
comes to rewarding your players with coins and more.

Note: You will need to enable the Unity Ads before the AdManager will work!

Here is how:

1. Open the Ads configuration window from “Window -> Services -> Ads”.
2. Turn on Ads and answer the questions from Unity.
3. You’re done!

Once you enabled the Unity Ads above, open up AdManager.cs.

At the top of the file, you will see a commented out “//#define USING_ADS”.
Uncomment that line by removing the “//” and you’re done! The AdManager is now
enabled and running.

For more information on Unity Ads, check out the manual here:
http://docs.unity3d.com/Manual/UnityAdsHowTo.html

How to use the IAP Manager?
Note: The IAP Manager that comes built into Coin Pusher Pro utilizes the Unity
services for In App Purchases and Analytics. You can find more about what Unity
has by following this link: https://unity3d.com/services/analytics/iap and
http://unity3d.com/learn/tutorials/topics/analytics/integrating-unity-iap-your-
game-beta?playlist=17123

You will need to make sure that you enabled the Unity Services In App Purchasing
before you can continue using the IAP Manager.

The IAP Manager inside of Coin Pusher Pro handles everything to allow you to
easily add your own IAP products quickly. You simply define a new product, drop it
in, and you’re done.

This is an overview of how the IAP Manager process works:

1. Create a IAPProduct that you want to sell
2. Fill out the IAPProduct information. This includes an internal ID and the IDs

you use on the stores (typically these are reverse domain format:
com.testdomain.productname)

3. Add this product to the IAP Manager
4. Add the IAPProduct to a button click using the buyProduct(IAPProduct

product) function included in the IAPManager.

How to add a new IAP Product?

1. Go to Window -> Coin Pusher Pro -> IAP -> Add New Product

a.
2. This will create a new IAPProduct inside of the folder

“Assets/CoinPusher/IAP/Products/”

a.
b. Rename this new IAPProduct to something unique like above.

3. Fill in the details on the new product on the Inspector

https://unity3d.com/services/analytics/iap
http://unity3d.com/learn/tutorials/topics/analytics/integrating-unity-iap-your-game-beta?playlist=17123
http://unity3d.com/learn/tutorials/topics/analytics/integrating-unity-iap-your-game-beta?playlist=17123

a.
b. The details you use here will reflect the unique ID you set up in both

your Apple portal and Google Play portal for this product. Typically
this is reverse domain format.

c. You can also change the type of Product by changing the drop down.
Consumable, Non Consumable, or Subscription.

d. The Internal ID needs to be a unique string; Coin Pusher Pro only
uses this.

4. In the project hierarchy, expand the CoinManager and look for IAPManager.
5. Drag and drop your new IAPProduct you created onto the array of existing

products

a.
b. You can also expand this array manually and use the selector circle to

add it. The choice is yours.
6. You are all done! You product is ready to be purchased.

How to setup the new IAPProduct for purchasing?

In this example, we are setting up a UI Button’s onClick to call the function in
IAPManager buyButton(IAPProduct product) passing it the IAPProduct that you
just made.

From the above screenshot, you can see that we dragged and dropped
10StackOfCash onto the exposed variable field for the method
IAPManager.buyButton(…).

Once you have that set up, you’re all done! When the user clicks this button, the
IAPManager will take care of the rest for you.

You can also call IAPManager.buyButton(IAPProduct product) or
IAPManager.buyButton(string product) from code to give you more control on
how purchasing is performed.

How do I define what happens to when they buy the IAPProduct?
Once the player purchases your new product, you will then need to actually provide
them the content they paid for. This is handled in the function
public PurchaseProcessingResult ProcessPurchase (PurchaseEventArgs args) inside

of IAPManager.cs.

This function will be called whenever a user either:

• Purchases a new product
• Restores the previous purchases

o Note: On the Apple platforms, the user needs to manually hit the
button that processes the previous purchases. Any other platforms,
like Google Play, this process happens automatically when the app or
game is installed.

In the above screenshot, you will see two sets of switch statements. The first switch
statement handles the consumable objects while the second handles a non
consumable product. Inside of each case statement, each string used needs to match
the internal ID of the IAPProduct you made earlier:

When these two match up in this function, the product is either just purchased or
being restored.

Inside of that each case statement you would then write your code to provide the
user with the item they purchased.

How do I change the machine skin (or theme)?

The Coin Pusher Pro Asset includes several pre-loaded
themes. These themes are labeled as “Theme<TYPE>”,
for example, ThemeCastle and ThemeHorror.

To change to a different theme, disable the current
theme by disabling the current machine game object and
enabling a new one.

How do I make a new coin?

1. Start with “Duplicate GoldCoin”.

2. Assign a new material to the new coin.

3. Edit the CoinEffect properties.

4. Assign the new coin to the CoinSpawnerArea under its appropriate group

type. The group type, which dictates the frequency of which each coin is
spawned, can be regular, common, rare, or epic.

How do I make a new collectable item?

1. Under the prefabs, go into the “CollectableItems” folder and duplicate, for
example, the Dice. (You have the option to use a pre-loaded item, or one of
your own. Directions for adding your own are explained in the next two
sections.)

2. Assign any new materials to the item.
3. Edit the CoinEffect properties according to your preference. (The “Type of

Coin” menu lists several pre-loaded options. Directions for adding your own
are explained later in this document”.)

4. Open the CollectableManager. Expand the “Collectable Objects” array by 1
(one) element.

5. Assign the new collectable item prefab you made to this spot.
6. Go to the CoinSpawnerArea gameobject and add this new collectable item

to any one of the available arrays. (The group types dictate the frequency of
which each coin is spawned, i.e., regular, common, rare, or epic.)

How do I make a custom coin or collectable item using my own model with the
preset Coin Effects and Type of Coin?

1. Starting with your object in Unity, add the following:
a. Collider – This can be whichever collider makes sense for your object.
b. Rigidbody – TIP: You can reference the other prefabs in the prefabs

folder for guidance on this element. Also, make sure the “using
gravity” option is checked.

c. CoinEffect – Edit the CoinEffect properties according to your
preference. (The “Type of Coin” menu lists several pre-loaded options.
Directions for adding your own are explained in the next section.)

2. Open the CollectableManager. Expand the “Collectable Objects” array by 1
(one) element and assign the new collectable item you made to this spot.

3. Go to the CoinSpawnerArea gameobject and add this new collectable item
to any one of the available arrays. (The group types dictate the frequency of
which each coin is spawned, i.e., regular coins/items, common, rare, or epic.)

How do I make a custom coin or collectable item using my own model, and
customize the Coin Effects and Type of Coin?

1. Starting with your object in Unity, add the following:
a. Collider – This can be whichever collider makes sense for your object.
b. Rigidbody – Make sure the “using gravity” option is checked. (TIP:

reference the prefabs in the prefabs folder for guidance on this.)
c. CoinEffect – This is the script that creates the magic of making an

item a coin or a collectable. Make sure you include a reference to this
script and customize it how you see fit.

2. If you have added coin effects that fall outside of the preset “Type of Coin”
options, you can easily add your own by doing a bit of C# coding.

a. Open up CoinEffect.cs and look for the enum Effect section (at the
top):

b. You can add a new effect at the bottom of the “enum Effect”
declaration.

c. Open EffectsManager.cs and look for the public void runEffect(…)
function.

d. This function consists of a switch statement that handles the different
types of effects. This is where you would add your own code and
create your own effects. (You can also interface to the local
EffectsManager and do awesome things like shake the screen from
here.)

3. Follow the same steps above for adding this new coin or collectable item to
the CoinSpawnerArea. If your item is a collectable, you’ll also need to add it
to the CollectableManager array (see steps above.)

How to add a new PowerUp?
For this example, we will make a new, “Super” Gift Coin that will give the user 10 in-
game dollars in addition to shaking the screen (earthquake!)

1. Select the Gift Coin prefab and duplicate it. Rename it “Super Gift Coin”.
2. To add custom rules (10 in-game dollars and shaking the screen) we will

need to define a new, custom Type of Coin. To do this, open the script
CoinEffect.cs.

3. Once in CoinEffect.cs, look for public enum Effect. Within that, find enum
and add your new type right below the existing GiftCoin, calling it
SuperGiftCoin.

4. Open EffectsManager.cs and scroll down to public void runEffect(..). This
function handles the preforming of any defined effects for the coin.

5. Inside the switch statement, look for case Effect.GiftCoin. Right below the
break; of that case add in the following new case:

case CoinEffect.Effect.SuperCoin:

 this.triggerGiftCoin();

 this.triggerEarthShakeEffect();

 playRewardSFX();

 break;
6. Now go back to your new prefab “Super Gift Coin” and, in the inspector,

change the drop down Type of Coin to the new SuperCoin you created.
7. On that same inspector window you’ll see an area below, on the CoinEffect,

to define a Prize Image. You will need to include a prize image here that is
shown both, in the CoinShop (when buying it), and as the PowerUp button
on the screen during play.

8. Go to the CoinShopManager, extend the CoinShopItems array by one (1)
and drag and drop your new prefab into the last slot.

How do I edit the pusher speed?

1. In the Machine gameobject, expand the machine you are working on. (For
example, expand ThemeHorror.)

2. Scroll down and find PushBar. (You will see a script called Pusher.cs)
3. Change the speed at which it pushes by adjusting the MoveSpeed.

NOTE: You will have to do this for each machine.

Script References

This section defines what the purpose of each script is.

CoinManager.cs
 This is the main script that will handle all coin related operations. It keeps
track of the amount of coins the player has, handles the reloading of new coins, and
controls the UI for the coin amounts.

IAPManager.cs
 This script handles all platform related IAP. It also contains the master array
of IAPProduct’s that can be purchased. Reference this script for sever
buyButton(…) functions that you can use to allow the user to purchase your items.

IAPEditor.cs
 Editor only code to expose the adding of new IAP products through the
Window in Unity.

TouchClickManager.cs
 This handles the touch/click inputs and converts them into the world space
for dropping a coin.

TouchClickArea.cs
 This is attached to any empty game object. It defines the area that the players
can click/touch that will drop an item.

CoinDestroyer.cs
 This is attached to the gameobject that will catch any coins that fall off of the
play field (and are not caught in the coin collector bucket.)

CoinSpawnerArea.cs
 This is the gameobject where the coins/collectables will be spawned. This
also controls which coins/collectables can be spawned in the entire asset.

EffectsManager.cs
 This is the effect manager. It’s where you will define any new effects. The
preloaded, defined effects are the earthquake coin, bull’s-eye coin and bumper coin.
This also handles popups for showing which effect was preformed.

AdManager.cs
 This includes a template to add the Unity ads system (if you want to include
ads in your game.)

LevelManager.cs

 This is the level manager and it handles the level UI bar as well as keeps track
of the player’s progression through their current level.

OutOfCoinsManager.cs
 This manages what happens when the player is out of coins. It handles
notifying the user and prompting them to watch an ad for more coins or, if you
include it, in-app purchasing of more coins.

CollectableManager.cs
 This manager handles all collectable items in the game. It is where you would
also add a collectable item to the array to display it in the Prize Shop for resale.

CoinShopManager.cs
 This is the manager for the Coin Shop. It is where you will define what items
the player can purchase for in-game cash. This handles all of the buying
transactions.

CoinShopItemInformation.cs
 This is attached to the prefab for any item that will appear in the Coin Shop. It
defines information about the item for sale.

PowerupManager.cs
 This handles the usage of any on screen powerups and the on screen UI
buttons (the powerup panel).

PowerupItemPrefabInformation.cs
 This is the powerup item information that is attached to the prefab.

BucketCoinCollector.cs
 This handles the collection of coins into the bucket and reports the correct
values, both, to the CoinManager for score keeping, and to the EffectManager to
engage effects.

HideAfter.cs
 This hides an object after X seconds.

RemoveAfter.cs
 This removes an object after X seconds.

Extras.cs
 This includes helpful functions that were designed for this asset.

MainMenuManager.cs
 This is a shell written for the main menu. (Very basic layout but included for
you to expand as needed.)

PlayerPrefsSerialize.cs
 This is a class that will help serialize the PlayerPrefs data for saving. It
handles the saving and loading of the serialized data.

Pusher.cs
 This pushes the push bar in the machine (back and forth) using limits set up
in the scene.

AudioManager.cs
 This manages all of the audio sources in the asset and controls the ability to
mute them using the UI button.

